CRIPTOGRAFIA D)A\D)(0)S

Premissa:

... informação é poder ...

Deus usou a matemática para construir o Universo ...

Criptografia:

```
cryptos = secreto
grafia = escrita
```

- técnica mais elaborada;
- processos sistematizados de transformação da mensagem original em uma mensagem ininteligível;
- a mensagem, não pode ser entendida a não ser pelas pessoas que sabem como recuperá-la;
- a mensagem, mesmo sendo interceptada em seu trânsito, resiste à decifragem;
- dois conceitos importantes estão na base da criptografia: os conceitos de algoritmo (cifra ou código) e o de chave.

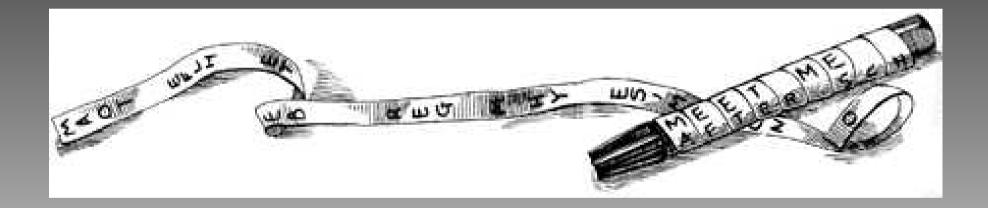
Ex: Chave:

- língua do p; ex: pvoupaopcipnepma
- Código de César;
- Máquina Enigma;
- Algoritmo:
 - DES;
 - 3DES;
 - MD5;
 - Blowfish;
 - Certificação digital;

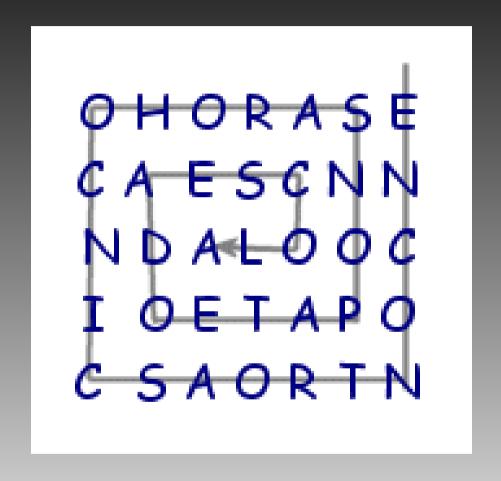
Transposição

- Troca de posição das lestras na mensagem;
- Embaralhamento das letras segundo uma chave pré- definida.

03 letras assumem 6 formas diferentes (3!=6) Ex: a palavra SOL -> sol, slo, osl, ols, lso e los


- Texto com 35 palavras ficaria: 35!=10.333.147.966.386.144.929.666.651.337.523.200.000.000

Problema ???


Ex:

- bastão de Licurgo (Sytale Spartano);
- grelha indefinida (Luigi Sacco durante a I Guerra Mundial);
- tabela Espartana.

Bastão de Licurgo (Scytale Spartano)

Grelha indefinida

Tabela Espartana

- Tabela comum de linhas e colunas (mXn);
- chave é dada pelas dimensões da tabela.

Ex:

- texto = ataquem o inimigo pelo desfiladeiro
- chave = 7×5

Α	Т	Α	Q	U
E	M	0	ı	N
ı	M	ı	G	0
Р	E	L	0	D
E	S	F	I	L
A	D	E	I	R
0	Α	В	С	D

- texto criptografado = A E I P E A O T M M E S D A A O I L F E B Q I G O I I C U N O D L R D

Criptoanálise

```
cryptos = secreto
analysis = decomposição
```

- guerra eterna entre criptografia e criptoanálise;

Ex: criptoanálise da tabela espartana

Texto a decifrar:

ODHX ROCAETARONGADAMTAFES AESEZANCE IHB

- fragilidade: matriz mXn
- -N=mXn
- logo m e n são divisores de N;
- Resolvido pelo método da força bruta tentativa:
- experimentar todas as possibilidades de chave na tentativa de produzir a decifragem (força bruta).
- funciona para códigos fracos ou quando o espaço de chaves é muito restrito.

- Temos que:

$$1 \times 36 = 36$$

$$3 \times 12 = 36$$

$$4 \times 9 = 36$$

$$6 \times 6 = 36$$

- testando todas as possibilidades baseados na eclusão, chegamos a conclusão de que a chave é 6x6, portanto:

0	С	0	M	Α	N	
D	Α	N	т	E	С	
н	E	G	Α	S	E	
X	Т	Α	F	E	ı	
R	Α	D	Е	Z	н	
0.	R	A	Ş	Α	В	

- A frase decifrada é: O comandante chega sexta feira dez horas

Substituição

- troca dos símbolos que constituem a mensagem por outros;

- existem 3 tipos de substituição:
 - simples (ou monoalfabética): um por outro;
 - homofônica: um por vários;
 - polialfabético: usa várias cifras de substituição simples.

Ex:

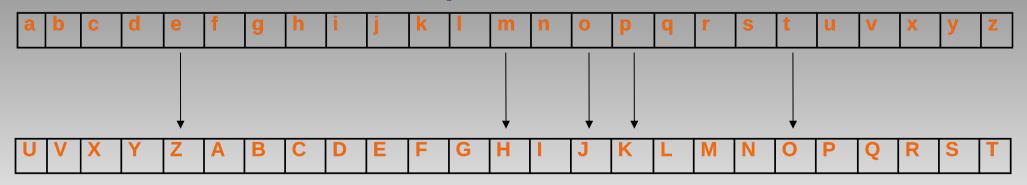
- Código de César;
- Cifra de Vigenère.

Substituição simples (ou monoalfabética)

- troca de um símbolo por outro;
- não necessita respeitar as letras do alfabeto e pode usar símbolos arbitrários.
- pode-se sofisticar utilizando-se palavra-chave;

Ex:

Código de César


- 100 a 44 A. C.;
- correspondência militar;
- chave de substituição simples;
- Código de César original: chave = 3;

Código de César:

- substituição de cada letra do alfabeto por uma letra transladada algumas posições à frente;
- emissário e o destinatário antecipadamente combinam trocar mensagens com este algoritmo;
- escolher uma chave, que deve ser um número entre 1 e 24 (ou o tamanho do alfabeto -1);
 - possibilidade = 25! 1

Ex:

chave escolhida = 5 texto a ser codificado = tempo

texto codificado:

OZHKJ

Código de César com palavra-chave

- Sofisticação posterior do Código de César;
- palavra-chave geralmente é constituída por uma ou duas palavras sugestivas para o contexto;
- não se usa repetição de símbolo na palvra-chave;
- escrevem-se as letras na seqüência do alfabeto, <u>pulando aquelas</u> <u>já utilizadas na palavra-chave.</u>

Ex:

a	b	С	d	е	f	g	h	ı	j	k	ı	m	n	O	р	q	r	S	t	u	V	x	у	z
V	_	Т	0	R	A	В	С	D	E	F	G	н	J	K	L	M	N	P	Q	S	U	X	Υ	Z

- texto a ser cifrado: cor a ge m
- palavra-chave = VITORIA
- texto cifrado: TKNVBRH

Criptoanálise do Código de César

- método da análise de frequências;
- ocorreu durante o século IX;
- criado pelo matemático árabe Al-Kindy;
- derrubou totalmente a criptografia baseada em substituição monoalfabética;
- obrigou os cientistas ligados à criptografia a buscarem novas formas de cifrar dados.

Análise de frequências

- periodicidade de ocorrência de cada letra é distinta;
- em qualquer texto:

$$NT = Na + Nb + Nc + ... + Nx + Ny + Nz$$

- e sua freqüência é dada por:

- na língua portuguesa a freqüência média aproximada de ocorrência de cada letra em textos longo é:

a	е	O	p,r, s	i, n	d, m, t	u, c, l	b, f, g, h, j, v, x, z
14,5%	13%	11,5%	8%	6%	5%	4,5%	menor que 3%

Texto para decifrar pela análise de frequência

EXCJLOHLNFLJLZ MCXJNCTNTXJMCXHXFZLT NNCILINTNEOFZNAOTNTNEOFZNOFUNFRONM CXIOTNMCXLJNFLJFNLHINDXEENOJMCXNELI MCXJLFZLJMCXUQLIXJFNMCXQNJ NITXJUNV CXOINJ NJLEPINTNJPNFNFXOINJTXPNOBLTL **JQNINFSNOJRLELJNLPXQLJLJTONJTLTXJGL** FHNITN XBOJHXFRONIXJGOINNNQENOFLRXF RONRLELGXIUCEXJNUQLILENIXQNVLJXIXFL LRXCCEENFHLNDCQNTLLECFTLCEJLFZLTLCI NTLNAOTN CEZOFLTX NELIMCXNCILINJMCXJL QMCXAOTNMCX FLOHXJTXEXQLTONFNMCXQN TLRX NQXVIONFNMCXQXOFVXFCLULQVNILRX CPLITNTLTX XJHIXQNJN HXIINTXNILENJ RZX ONNJ LFTNJ PXOSNFTLNNIXONXNQCNPXOSN FTLLENIRNJOEOILTXNPIXC

Solução:

- contar o total de letras: 503

- efetuar a análise da freqüência das repetições de cada letra:

Símbolos	N	L	X	J	F	1	т	0
Freqüências	16,5%	11,3%	11,1%	7,3%	6,5%	6,5%	6,5%	6,1%

- comparar com a freqüência do alfabeto em questão:

a	е	O	p,r, s	i, n	d, m, t	u, c, I	b, f, g, h, j, v, x, z
14,5%	13%	11,5%	8%	6%	5%	4,5%	menor que 3%

- Comparativo das duas tabelas acima:

Cifras	N	X, L	J, F, I, T, O
Letras	a	e,o	r, s, i, n, d, m, t, p

- resolver a dúvida entre as letras X e L;

- uma solução é buscar no texto seqüência que cifra a palavra "que" (muito comum na língua portuguesa);

EXCJLOHLNFLJLZ MCXJNCTNTXJMCXHXFZLTNNCILINTN EOFZNAOTNTNEOFZNOFUNFRONMCXIOTNMCXLJNFLJF NLHINDXEENOJMCXNELI MCXJLFZLJMCXUQLIXJFNMCX QNJ NITXJUNVCXOINJ NJLEPINTNJPNFNFXOINJTXPNOB LTLJQNINFSNOJRLELJNLPXQLJ LJ TONJTLTXJGLFHNITN XBOJHXFRONIXJGOINNNQENOFLRXFRONRLELGXIUCE XJ NUQLILENIXQNVLJXIXFLLRXCCEENFHLNDCQNTLLEC FTLCEJLFZLTLCINTLNAOTN CEZOFLTX NELIMCXNCILINJ MCXJLQMCXAOTNMCX FLOHXJTXEXQLTONFNMCXQNTL RX NQXVIONFNMCXQXOFVXFCLULQVNILRXCPLITNTLTX XJHIXQNJN HXIINTXNILENJ RZXONNJ LFTNJ PXOSNFTL N NIXONXNQCNPXOSNFTLLENIRNJOEOILTXNPIXC

- MCX aparece 14 vezes, logo é forte crermos que substitui o "que", e que portanto "X" corresponde a "e", e que que "M" e "C" estão cifrando, respectivamente, as letras "q" e "u";

- Logo podemos repensar melhor nossa tabela comparativa da seguinte forma:

Cifras	N	X	اــ	С	M	J, F, I, T, O
Letras	a	е	0	u	Q	r, s, i, n, d, m, t, p

- a seguir podemos tentar definir as letras "a", "e", "o", portanto buscaremos os dígrafos "nha" e "nho":

EXCJLOHLNFLJLZ MCXJNCTNTXJMCXHX FZLTNNCILINTN EOFZNAOTNTNEOFZNOFUNFRONMCXIOTNMCXLJNFLJF NLHINDXEENOJMCXNELI MCXJL ZZ JMCXUQLIXJFNMCXQNJ NITXJUNVCXOINJ NJLEPINTNJPNFNFXOINJTXPNOBLTLJQNINFSNOJRLELJNLPXQLJ LJ TONJTLTXJGLFHNITNXBOJHXFRONIXJGOINNNQENOFLRXFRONRLELGXIUCEXJ NUQLILENIXQNVLJXIXFLLRXCCEENFHLNDCQNTLLECFTLCEJLFZLTLCINTLNAOTN CEZOFLTX NELIMCXNCILINJMCXJLQMCXAOTNMCX FLOHXJTXEXQLTONFNMCXQNTLRX NQXVIONFNMCXQXOFVXFCLULQVNILRXCPLITNTLTXXJHIXQNJN HXIINTXNILENJ RZXONNJ LFTNJ PXOSNFTLN NIXONXNQCNPXOSNFTLLENIRNJOEOILTXNPIXC

- A busca revela na mensagem cifrada duas vezes FZN e três vezes FZL;
- logo, possivelmente temos que "nha" e "nho" têm como cifra, respectivamente, FZN e FZL;
- Portanto é possível avançar um pouco mais e melhorar a Tabela, ficando assim:

Cifras	N	X	L	M	С	F	Z	J, I, T, O
Letras	a	е	O	q	u	n	h	r, s, i, d, m, t, p

- agora vamos buscar cifras para os blocos "as", "os" e "es" que formam a maior parte dos plurais;
- Percebemos que uma das cifras entre J, I, T, O deve representar a letra "s";

- Olhando novamente o texto vamos encontrar a ocorrência de NJ e XJ, cada um com 12 e 11 vezes, respectivamente, e LJ com 9 vezes;
- isto fortalece que J deve estar cifrando a letra "s";
- Conseguimos portanto decifrar 8 letras: <u>a</u>, <u>e</u>, <u>o</u>, <u>q</u>, <u>u</u>, <u>n</u>, <u>h</u>, <u>s</u>
- este conjunto de letras representa, com forte indício, a cifragem de mais de 40% das letras do alfabeto;
- o trabalho agora é substituir no texto cifrado as cifras N, X, L, M,
 C, F, Z, J, pelas letras <u>a</u>, <u>e</u>, <u>o</u>, <u>q</u>, <u>u</u>, <u>n</u>, <u>h</u>, <u>s</u>;
- em seguida, tentar dar sentido ao texto remanescente que permanece cifrado, isto não é fácil, mas ao final teremos:

a	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	V	X	у	Z	
N	Р	R	Т	X	U	V	Z	0	S	K	Q	Ε	F	L	G	М	ı	J	Н	С	Α	В	Υ	D	

- seguindo a tabela e decifrando o texto, teremos:

Meus Oito Anos (*) Oh! Que saudades que tenho Da aurora da minha vida, da minha infância querida Que os anos não trazem mais! Que amor, que sonhos, que flores, Naquelas tardes fagueiras À sombra das bananeiras, Debaixo dos laranjais! Como são belos os dias Do despontar da existência! Respira a alma inocência Como perfumes a flor; O mar é lago sereno, O céu um manto azulado, O mundo um sonho dourado, A vida um hino d'amor! Que auroras, que sol, que vida, Que noites de melodia Naquela doce alegria, Naquele ingênuo folgar! O céu bordado d'estrelas, A terra de aromas cheia. As ondas beijando a areia E a lua beijando o mar! Casimiro de Abreu

Código de substituição homofônica

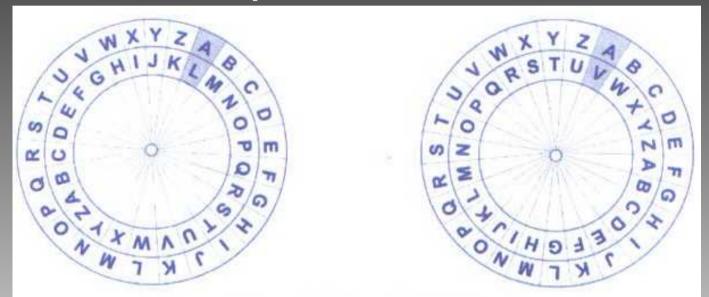
- tentativa de reação à análise de freqüências;
- associar a cada consoante um símbolo;
- para cada vogal quatro ou cinco símbolos distintos;
- para dificultar a decifragem, introduziu-se símbolos que nada significavam;

b	С	d	f	g	h	j	k		m	n	р	q	r	S	t	٧	Х	У	Z
U	Χ	T	Н	\$	N	ø	Α	V	θ	П	E	Ã	Р	L	Q	Σ	S	Υ	
Letr					е		İ			0			u			nulo	os		
Cifr	as	R	D	8	#	@	Ω	3 F	Ð	М	\$	∇	ZΙ		С	Δ	J,C	,α,	β

- cifragem: enview tanques hoje $\Rightarrow @\Pi J\Sigma F\Omega \theta \alpha QR\Pi \lambda OBLN \cup \$ \phi @$

- apesar de várias cifragens, as fragilidades persistiam com os códigos homofônicos.

Pergunta???


por que não associar de uma vez várias cifras distintas a cada letra?

Resposta:

- seria a solução evidente para uma fuga consistente da análise de freqüências;
 - a chave que permite a cifragem e a decifragem deve também atender ao quesito usabilidade;
- a criptografia, até o início do século XX, era usado essencialmente a serviço do comércio e principalmente militar, na trincheria durante a baltalha, com necessidade de decifrar rapidamente uma mensagem vital, o código teria de apresentar uma interface amigável.

Código de substituição polialfabético

- alternativa a cifra monoalfabética;
- criado por Leon Battista Alberti, em 1470;
- primeira cifra polialfabética;
- pela primeira vez foi utilizado um processo mecânico;
- processo foi conhecido por "discos de Alberti":

- o número de discos depende do tamanho da palavra-chave;
- as letras de ordem ímpar do texto original são cifradas usando
 A > L;
- as letras de ordem par do texto original são cifradas usando
 A > V;

Cifra de Vigenère

- criado para fugir à análise de frequências;
- criado por Blaise de Vigenère, em 1586;
- Foi chamada de "a cifra indecifrável";
- durou aproximadamente 286 anos;

Cifra de Vigerère:

- sistema polialfabético ou de sustituição múltipla;
- estrutura é definida por uma tabela;
- constituída por uma matriz quadrada de 26 linhas e 26 colunas.

	а	ъ	С	đ	е	f	g	h	i	j	k	1	m	n	0	p	q	ſ	S	t.	IJ.	V	X	у	Z
а	а	Ъ	С	đ	е	f	8	h	i	j	k	1	m	n	0	p	q	ſ	S	t	u	V	X	у	Z
ъ	ъ	С	đ	е	f	Ø	h	i	٠٠.	k	1	m	n	0	p	q	Ť	S	t	u	V	X	у	Z	а
С	С	đ	е	f	g	h	i	j	k	1	m	n	0	p	q	ſ	S	t	u	V	Х	у	Z	а	b
d	đ	е	f	g	h	i	j	k	1	m	n	0	p	q	ſ	S	t.	u	٧	X	у	Z	а	b	С
е	е	f	g	h	i	j	k	1	m	n	0	p	q	ſ	S	t	u	V	X	у	Z	a	ъ	С	đ
f	f	g	ħ	i		k	1	m	n	0	p	q	ľ	S	t.	u	V	X	у	Z	а	b	C	đ	е
50	g	h	i	j	k	1	m	n	0	p	q	ſ	S	t	u	V	X	у	Z	а	b	С	đ	е	f
h	h	i	j	k	1	m	n	0	p	q	ſ	ſ	S	t	V	X	у	Z	а	b	C	đ	E	f	g
i	i	j	k	1	m	n	0	p	q	r	S	t	u	V	X	у	X	а	ъ	С	đ	е	f	g	h
j	j	k	1	m	n	0	p	q	ſ	S	t.	u	V	X	у	Z	а	ъ	С	đ	е	f	g	h	i
k	k	1	m	n	0	p	q	r	S	t	u	V	X	у	Z	а	b	С	đ	е	f	g	h	i	j
1	1	m	n	0	p	q	ſ	S	t	u	٧	X	у	Z	а	b	O	đ	е	f	g	h	i	j	k
m	m	n	0	p	q	Ť	S	t	u	V	X	у	Z	а	b	C	đ	е	f	g	h	i		k	1
n	n	0	p	q	ľ	S	t	u	V	X	у	Z	а	b	С	đ	e	f	50	h	i	j	k	1	m
0	0	p	q	r	S	t	u	V	X	у	Z	а	b	С	đ	е	f	g	h	i	j	k	1	m	n
p	p	q	ť	S	t	u	V	X	у	Z	а	b	С	đ	е	f	g	h	i	j	k	1	m	n	0
q	q	ſ	S	t	u	V	X	у	Z	а	b	С	đ	е	f	g	h	i	j	k	1	m	n	0	p
r	r	S	t	u	V	X	у	Z	а	b	С	đ	e	f	g	h	i	j	k	1	m	n	0	p	q
S	S	t	u	V	X	у	Z	а	b	С	đ	е	f	g	h	i	j	k	1	m	n	0	p	q	f
t.	t	u	V	X	у	Z	а	b	С	đ	е	f	90	h	i	j	k	1	m	n	0	p	q	r	S
u	u	V	X	у	Z	а	b	С	đ	е	f	g	h	i	j	k	1	m	n	0	p	q	ľ	S	t
v	V	X	y	Z	а	ъ	С	đ	е	f	g	h	i	j	k	1	m	n	0	p	q	ľ	S	t	u
X	X	у	Z	а	b	C	đ	е	f	g	ħ	i	j	k	1	m	n	0	p	q	ľ	S	t	u	V
у	у	Z	а	b	С	đ	е	f	g	h	i	j	k	1	m	n	0	р	q	f	S	t	u	V	X
Z	Z	а	b	С	đ	е	f	99	h	1	j	k	1	m	n	0	p	q	Ť	S	t	u	V	X	У

Chave para a Cifra de Vigenère

- a chave pode ser qualquer palavra:
 - uma frase;
 - ou um conjunto arbitrário de letras;
- não há impedimento para o comprimento da chave (número de letras distintas).

Ex:

- texto a ser cifrado: armada submarina entrando no porto sábado
- palavra-chave: S E G R E D O

Mensagem original	a	r	m	a	d	a	S	u	b	m	a	r	i	n	a	е	n	t
Palavra chave	s	E	G	R	D	0	S	E	G	R	D	0	S	Ε	G	R	D	О
Mensagem cifrada	S	V	S	R	G	0	L	Z	Н	E	D	G	В	R	G	V	Q	ı
Mensagem original	r	a	n	d	0	n	0	р	0	r	t	0	S	a	b	a	d	0
Palavra chave	s	E	G	R	D	0	S	E	G	R	D	0	S	Ε	G	R	D	0
Mensagem cifrada	K	Ε	Т	U	R	С	Н	Т	U	J	X	D	L	E	Н	R	G	D

SVSRGOLZHEDGB RGVQIKETURCHTUJXDLEHRGD

A principal inovação do método de Vigenère:

- várias cifras para a vogal a;
- esta letra que aparece oito vezes na mensagem original;
- ela é cifrada de acordo com a ordem de aparecimento da letra, respectivamente, pelos códigos de César definidos pelas letras S, R, O, D, G, E, E, R;
- portanto, apesar da mensagem ser curta, usamos 6 códigos distintos para cifrar a letra de maior freqüência de nosso alfabeto;
- O mesmo se aplica a todas as outras letras do alfabeto, todos tendo portanto vários códigos, praticamente impossibilitando humanamente a sua análise de freqüências;
- PROBLEMA: por ser muito difícil cifrar e decifrar pelo Código de Vigenère, ele ficou quase 200 anos em desuso.

Criptoanálise : O ataque de Babage à Cifra de Vigenère

- criado, em 1856, pelo matemático Inglês Charles Babage;
- foi uma das figuras científicas mais enigmáticas do século XIX;
- trabalhou no desenvolvimento de máquinas que hoje são reconhecidas como precursoras dos modernos computadores;
- assim como a análise de freqüências, ao quebrar a cifra dita indecifrável, Babbage coloca de novo em xeque à criptografia;

Solução:

- identificar o tamanho da palavra-chave;
- utilizar, baseado no tamanho da palavra-chave, a análise de frequências;

Ou seja:

- 1°) identificar o comprimento <u>m</u> da palavra-chave que identifica o número de letras, sem repetição da palavra-chave;
- 2°) dividir a mensagem criptografada em <u>m</u> textos disjuntos e aplicar a cada um a análise de freqüências.

Outros tipos de Códigos de criptografia

Cifra Playfair:

- substituir cada par de letras da mensagem original por outro par de letras (as cifras;
 - uso de palavra-chave.

Cifra ADFGVX

- mais famosa cifra usada na Primeira Guerra Mundial;
- foi quebrada em situação dramática por Pavin, com o exército alemão nos calcanhares de Paris;
- exemplo clássico de código que mistura as duas grandes técnicas da criptografia clássica: substituição e transposição;
- chave simétrica que permite a cifragem e a decifragem também é híbrida, constando de duas partes, uma para cada processo.

Cifra ADFGVX

A estrutura da cifra é definida por uma tabela quadrada (7x7), com quarenta e nove entradas. Na primeira linha e primeira coluna a partir da segunda posição, aparecem, sequencialmente, as letras A, D, F, G, V, X que dão nome à cifra.

A posição correspondente à primeira linha e primeira coluna fica vazia.

As outras trinta e seis posições são preenchidas pelas vinte e seis letras do alfabeto e mais dez dígitos.

Note que como observado no início do Texto 1, para a cifra ADFGVX o alfabeto é o inglês com as letras.

abcdefghijklmnopqrstuvxwyz

Cifra ADFGVX

As posições para as letras e para os dígitos, dentro da tabela, são escolhidas de modo aleatório e constituem a parte da chave do código para a etapa caracterizada por substituição.

Atabela e preenchida pelos 26 caracteres do alfabeto e pelos 10 algarismos numericos.

	A cifra ADFGVX	A	D	F	G	V	X
Α		a	8	u	i	0	4
D		x	g	е	6	у	h
F		S	0	q	m	k	2
G		d	1	Z	9	r	1
V		5	b	j	n	w	C
X		f	3	V	р	7	t

Cifra ADFGVX

Exemplo:

Considerando a Tabela anterior que define parte da chave correspondente à etapa de substituição de um código ADFGVX. Usando a palavra GATO como parte da chave para a etapa de transposição, cifre a mensagem:

sigam a rota 29

Fase de substituição

Nesta fase, cada letra ou dígito da mensagem original é substituida por um par de letras.

Cada letra ou dígito da mensagem original é substituida por um par da da tabela.

Assim a mensagem:

sigam a rota 29

Fica assim:

FA AG DD AA FG AA GV AV XX AA FX GG

Esta fase corresponde a uma substituição monoalfabética, que pode ser quebrada por análise de freqüência. Com o objetivo de tornar mais robusta a cifragem vem a segunda fase da cifragem.

Fase de Transposição

Esta etapa corresponde a uma transposição orientada por uma palavra-chave.

Nesta etapa, partindo da mensagem já cifrada pela primeira fase promove-se um embaralhamento – uma transposição – das letras, com auxílio da segunda parte da chave que é a palavra GATO.

Fase de Transposição

A regra para efetuar a transposição consiste em usar duas novas tabelas.

No topo da primeira tabela é escrita a palavra-chave GATO.

Em seguida, o texto cifrado é escrito em linhas nesta primeira tabela.

G	Α	Т	0
F	Α	Α	G
D	D	Α	Α
F	G	Α	Α
G	V	Α	V
X	X	Α	Α
E	X	G	G

Fase de Transposição

A primeira tabela tem suas colunas reorganizadas de modo que a palavra-chave continue no topo, mas as letras são escritas na ordem alfabética.

Α	G	0	Т
A	F	G	Α
D	D	Α	Α
G	F	Α	Α
V	G	V	Α
X	X	Α	Α
X	F	G	G

Fase de Transposição

Finalmente, a mensagem cifrada correponde ao texto que pode ser lido sucessivamente nas colunas da tabela anterior.

Logo teremos a mensagem "sigam a rota 29" finalmente codificada como:

ADGVXXFDFGXFGAAVAGAAAAG

Cirptoanalise da Cifra ADFGVX

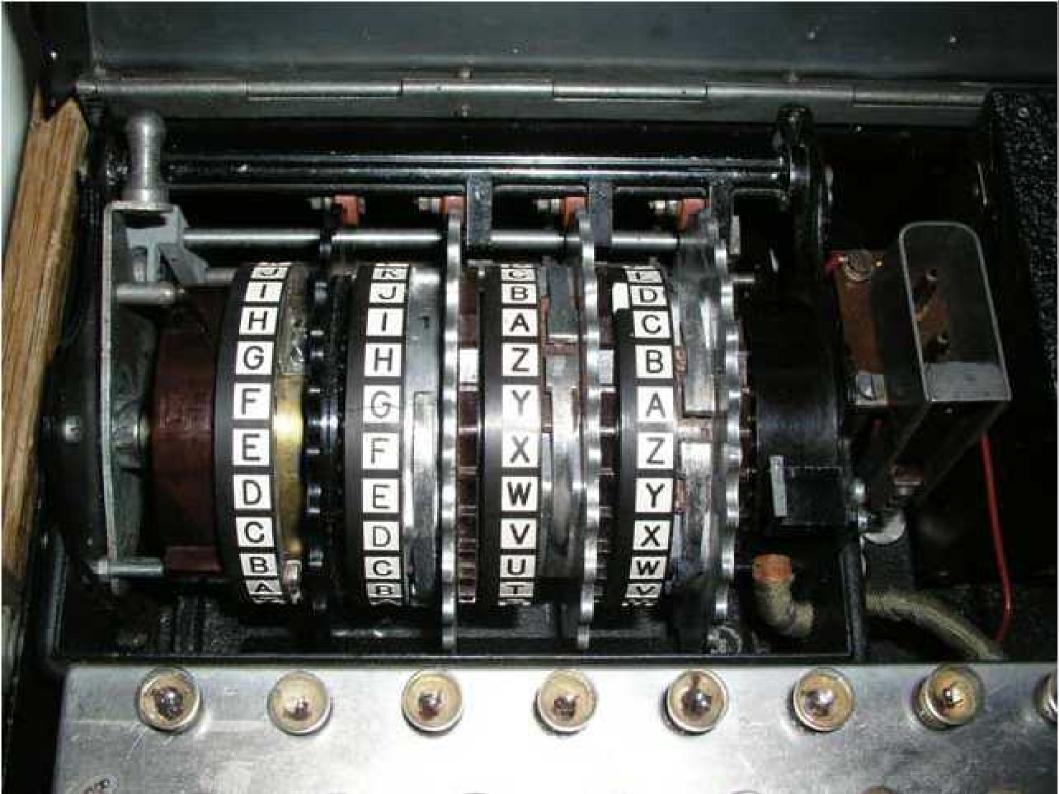
A primeira fase da cifragem corresponde a uma substituição monoalfabética, que pode ser quebrada por análise de frequência.

A segunda etapa refere-se a uma transposição, usando métodos que podem ser comparados aos da tabela Espartana que foi estudado anteriormente, portanto suscetivel a quebra via analise fatorial.

A máquina Enigma e a II Guerra Mundial

- durante a II Guerra Mundial, a criptografia experimenta notável efervescência;
- grande parte motivada pela entrada em cena da máquina de cifras alemã denominada Enigma;
- os alemães apostaram fortemente sobre a eficiência do equipamento para vencer a guerra;

Criptoanálise do Enigma

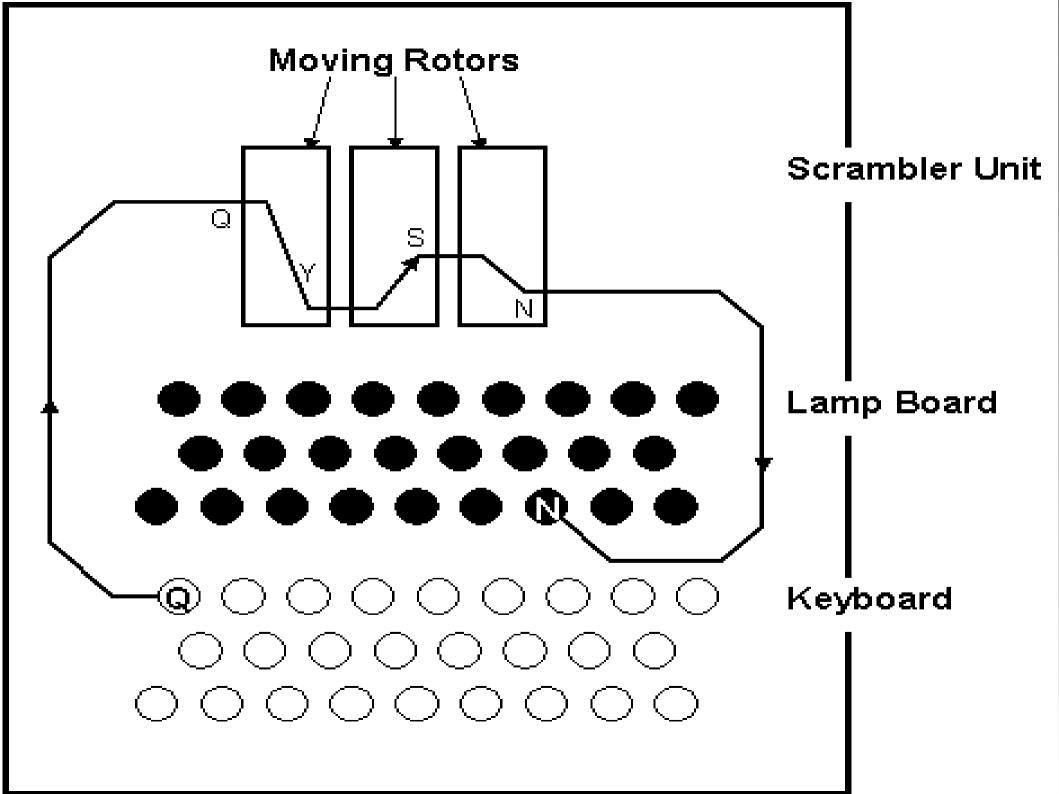

- envolveu poloneses e franceses em uma primeira fase e, finalmente, a parte significativa do trabalho foi realizada pelos ingleses;
- só foi possível porque os aliados conseguiram roubar uma máquina enigma e o seu livro de códigos; U 571
- Liderados por Alan Turing, construiu-se os primeiros computadres eletro-mecânicos Bomba e Colossus (programável e precursor dos computadores eletrônicos) (ENIAC). ENIGMA

Dificuldades na criptoanálise

- os alemães mudavam constantemente as configurações do ENIGMA;
- as chaves tinham validade mensal;
- a máquina ENIGMA era constantemente melhorada;
- acréscimo de mais dois misturadores, incrementando, de modo impressionante, o número de chaves possíveis;
- representa um divisor de águas entre a criptografia clássica e a moderna – a criptografia antes e depois da existência do computador;
- representou o estágio mais avançado a que se pode chegar com as máquinas de cifrar, com base exclusivamente mecânica e com a utilização de corrente elétrica;
- inspirado nos discos de Alberti;
- Os discos são o princípio básico dos misturadores, que são o coração do enigma;

Estrutura

- teclado;
- painel luminoso;
- câmara com misturadores;
- refletor;
- painel frortal com cabos elétricos;


Combinações de cifragens

- três misturadores e com 26 posições:

- são 6 posições distintas para os 3 misturadores:

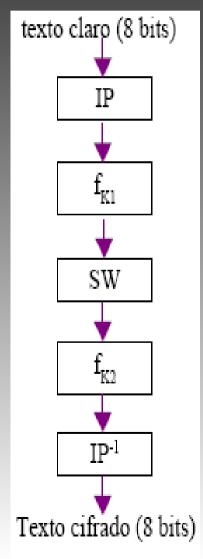
- possibilidade de realizar um máximo de 13 conexões entre o teclado e os misturadores através do painel frontal:
 - + de 1.000.000.000 de combinações possíveis

1000 Enigmas -> 4 chaves/m -> 24 h/dia - não conseguiriam verificar todas as chaves possíveis nem em 900 milhões de anos

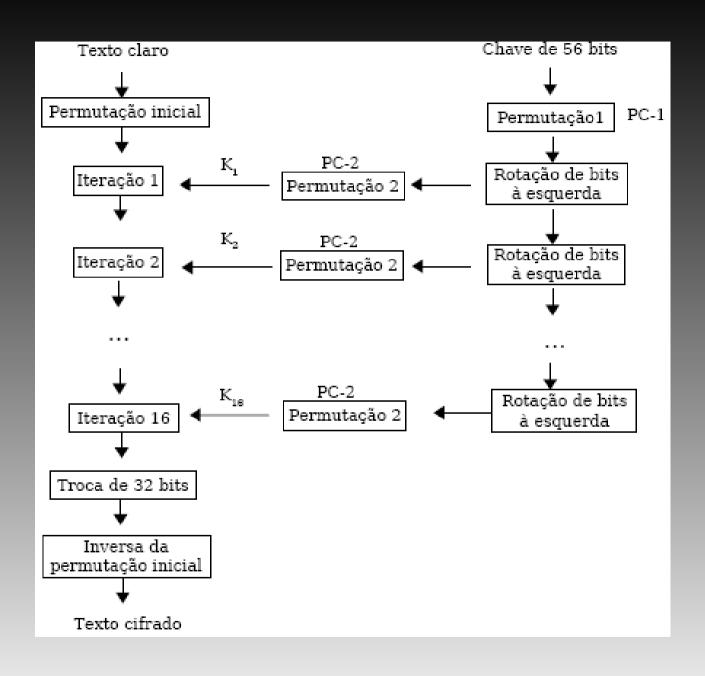
Criptografia clássica:

- necessita do conceito de chave simétrica ou chave secreta;
- a chave usada para cifrar uma mensagem é a mesma usada para decifrar;
- nesse aspecto reside a grande fragilidade do método;
- é necessária uma troca prévia da chave entre emissor e receptor antes do início do fluxo de mensagens;
- o risco de interceptação da chave é grande;
- esta pode ser lida durante a transmissão, sem que os agentes que promovem a troca tomem conhecimento;
- em 1977, surge o conceito de chave assimétrica ou chave pública;
- dividiu a criptografia em antes e depois deste evento.

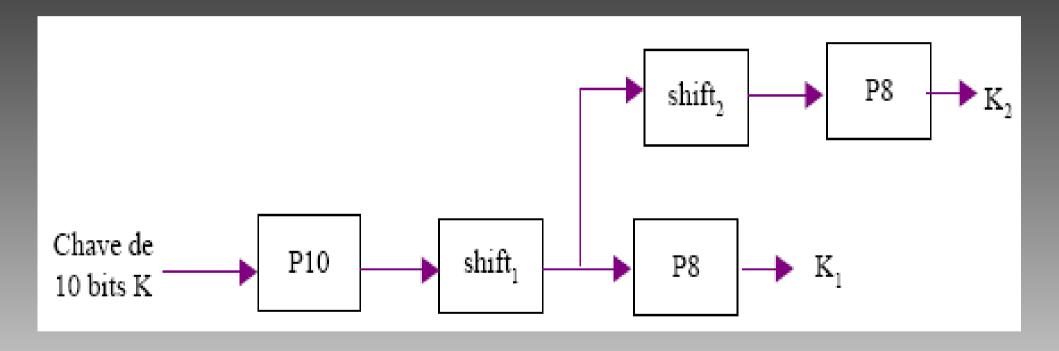
Criptografia moderna

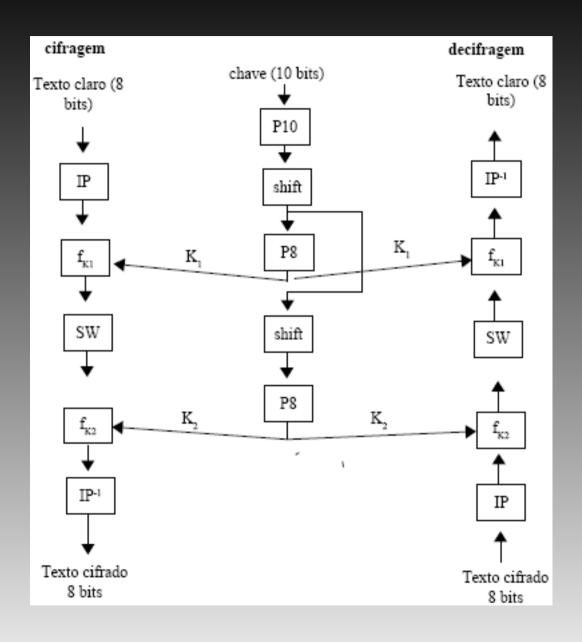

- era digital;
- baseado em algoritmos;

Algoritmo DES


- IBM, 1974 (1960);
- foi adotado como padrão nos Estados Unidos pela NSA;
- A NSA (National Security Agency) diminuiu o a dimensão da chave;
- apesar das restrições da NSA, o DES pode alcançar 2⁵⁶ chaves distintas;
- É o algoritmo criptográfico mais usado no mundo (incluindo suas variações, como o 2DES e 3DES);

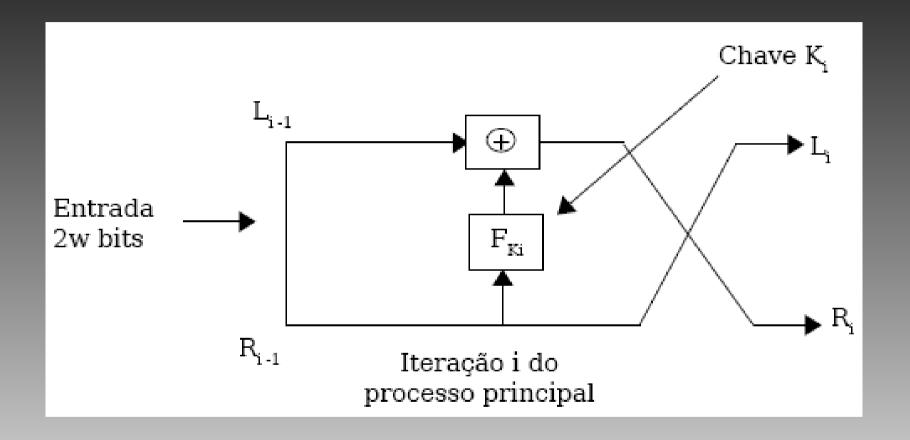
Algoritmo DES simplificado (S-DES)




Algoritmo DES simplificado (S-DES)

Geração de chaves no S-DES

Decifragem de chaves no S-DES


Quebra do algoritmo DES

- em 1977, um pesquisador chamado Wilner projetou uma máquina que custaria cerca de US\$ 100.000,00, na época, e levaria cerca de 6 horas para encontrar a chave correta para um texto criptografado com o DES;
- em 1998, a equipe de John Gilmore, no EFF (Electronic Frontier Foundation) construiu uma máquina projetada para analisar o espaço de chaves do DES;
- em junho de 1998 eles anunciaram ter quebrado um código DES, com esta máquina somente, em 46 horas;
- a máquina é chamada DES Key Search Machine e é capaz de testar 90 bilhões de chaves por segundo;
- neste ponto ficou provado que o DES não era mais seguro e que algoritmos mais fortes deveriam substituí-lo como padrão. O feito da EFF derrubou de vez o DES que, mesmo com sua chave de apenas 56 bits, reinou por 2 décadas como padrão de criptografia simétrica.

DES Key Search Machine

Algoritmo Cifra de Feistel

Criptografia Assimétrica

- após a quebra do DES em poucas horas, viu-se a necessidade de novo suspiro para a criptografia;
- criou-se então o conceito de chave pública, que seria uma nova era na criptografia;
- foi criado por Whitfield Diffie em 1975;
- idéia:
- um par de chaves, uma delas deve ser divulgada (a chave pública) enquanto que a outra que deve ser mantida em sigilo (a chave privada);
 - A chave pública é utilizada para criptografar a mensagem;
- enquanto que a chave privada é utilizada para decifrar a mensagem.

Ex:

- inicia-se o processo quando ambos geram um par de chaves.
- Alice gera seu par:
 - CA = Chave pública de Alice
 - DA = Chave secreta de Alice
- enquanto Bob gera seu par:
 - CB = Chave pública de Bob
 - DB = Chave secreta de Bob
- a chave públicada é divulgada um para o outro, ou para quem quiser;
- A chave privada são mantidas em segredo.

Processo:

- para enviar uma mensagem P a Alice, Bob usa a chave CA, produzindo o texto cifrado CA (P);
- este é enviado por qualquer meio;
- Alice recebe a mensagem CA (P) e usa sua chave secreta DA , obtendo

- isto é, recupera a mensagem inicial.

- Não importa que o texto seja interceptado em trânsito, porque somente Alice conhece a chave secreta DA e pode decifrá-lo.

Esquema:

Alice	Bob	
Gera par de chaves	Quer enviar mensagem	
D_A , C_A . Divulga C_A	P para Alice.	
	Usa chave pública de	
	Alice e gera mensagem	
	$cifrada C_A(P)$	
Recebe C _A (P)	- Transmite $C_A(P)$	
Usa chave secreta D _A		
e recupera mensagem		
inicial.		
$P=D_A(C_A(P))$		

- caso algum hacker conseguisse interceptar toda a comunicações entre Alice e Bob saberia apenas a chave publica CA e a mensagem cifrada CA (P), não poderia decifrar a mensagem pois não conhece DA e o conhecimento de CA não permite deduzir DA.

F I M

Jiyan Yari

jeandems@gmail.com

